Monday Meeting presentation 05/12/2022

Nikiforos Pyrounakis

Research assistant

Downloading all the metagenomic datasets

.Lets analyze all the available metagenomic data once more

- **.**Previous years 214,095 metagenomic datasets were analyzed
- .End of November: 359,603 metagenomic datasets

Dummy pipeline

DATA

Before pressing the button

.Before we start downloading Petabyte of data:

- -Is there room for improvement?
- -Can new tools realistically lead to better results?
- . Targeted + functional software
- 1)Better results
- 2)Less computational time
- ✓Less money spent

.Taxonomy profiling

.Seed based metagenomic assembly

.Metaphlan 4

.Kaiju

.Metacherchant

 Profiling the composition of microbial communities (Bacteria, Archaea, Eukaryotes)

.~5.1M unique clade-specific marker genes identified from ~1M microbial genomes spanning 26,970 species-level genomes bins

- .Sensitive taxonomic classification of high-throughput sequencing reads
- **.NCBI** taxonomy + A reference database containing microbial and viral protein sequences
- .Available genomes from NCBI RefSeq or the microbial subset of the NCBI BLAST non-redundant protein db,*nr*

.Computerome --> Thin node – 40 cores + 185 gb

.10 metagenomic samples of various sizes(Pig, Chicken, Sewage, Nasal, Human feces, Soil, Fresh water, Marine water,...)

*.usr/*bin/time + Snakemake built in benchmarking feature

Metaphlan 4 vs Kaiju - Memory

Memory consumption

Samples

Metaphlan 4 vs Kaiju - Time

Execution Time

Samples

Metaphlan 4 vs Kaiju

.Cases where both tools reported same species as the most abundant: 4

Case where tools reported different species as most abundant:
2

.Cases where Kaiju did not report species: 0

.Cases where Metaphlan did not report species: 4

Metacherchant

Algorithm for extracting the genomic environment of antibiotic resistance genes

.Performs sensitive taxonomic classification of sequencing reads from metagenomes

Input raw reads : ERR3261545-Nasal.

.Seed: blaTEM gene (~860 nucl.)

–One of the most commonly encountered β -lactamase with more than 150 variants.

.Kmer size : 30

Metacherchant results

.Fast

.Lightweight

.Visualization options with Bandage

Bandage output. Green nodes correspond to the seed sequence. Gray nodes is the r

15

Validation of Metacherchant results

.We used Spades to assemble the same sample

.We visualized the .graph file of Spades with Bandage

.We extracted the node containing the *blaTEM* gene and its environment

If everything worked fine...

Expected *blaTEM* gene with prolonged flanks Spades node containing blaTEM gene and its environment

Validation of Metacherchant results

.Which databases should we use? Continue testing and benchmarking

.Using snakemake framework for downloading and analyzing metagenomic datasets

Thank you!