
Semantic versioning,
POSIX utility conventions

and GNU extensions

Philip T.L.C. Clausen



Semantic Versioning

• Comparability

• Stability

• Dependency hell
• Locks and Promiscuity



Comparability

• Each number is to be 
interpreted numerically.

• Major > Minor > Patches

• Example:
• 1.0.0 < 1.0.1 < 1.10.0 < 2.1.2



How to increment

• Major
• Update that breaks the API
• E.g., requiring a new dependency from the API

• Minor
• New feature added
• E.g., new option that enables novel treatment of data

• Patches
• Bug fixes
• E.g. fixed error occurring when parsing input



Stability

• Major version zero is considered unstable.
• I.e., backwards compatibility might break at any update.
• E.g. 0.1.1 and 0.2.0 might not work on the same machine.

• Major version above zero shall be stable.
• I.e., if 1.3.0 works for your purpose, then 1.4.2 will work as 
well, 1.1.3 might not work.

• Dependency requirements may be specified as:
KMA >= 1.4.1
1.4.1 <= KMA < 2.0.0



Version out of control

• Won’t semantic versioning end up at version 64.0.0 
quickly, when adding backwards incompatible changes 
are not allowed.

• This is why we have major version zero.

• Backwards incompatibility should not be added lightly.

• If so, you probably do not have a lot of dependent 
software.



Dependency hell

The dreadful pit your software end up in, when there are 
not paid attention to semantic versioning. Rendering the 
software as un-updatable without changing the major 
version frequently.

• Version locks
• Dependency versions are locked too tightly.

• Dependency promiscuity
• Dependency versions are specified too loosely.
• Too many dependencies.



Version locks

• If a dependency requires a specific version, your 
software will break whenever that dependency is 
updated at the API. I.e., git commits are a nogo.

• If two different dependencies require different 
versions of a dependency in common.

• Remember that version locks are intended when 
publishing results, not methods.



Solutions to version locks

• Remember that only backwards incompatible dependencies 
should break your software.

• Limit the number of dependencies, sharing dependencies. 
I.e., do not make pipelines of pipelines, as these tend 
to add dependencies quickly, some that might be mutually 
exclusive.

• Not all major version changes of dependencies breaks 
compatibility for your specific use case.

E.g. CSI Phylogeny works despite changes of BWA



Dependency promiscuity

• If a dependency has a major version change, it is 
your responsibility to ensure that your software 
works with the new release as well, if a limit was 
not specified.

• Keeping track of a lot of dependencies quickly 
becomes unmanageable, especially if a few of them 
are at major version zero.



Solutions to dependency promiscuity

• Keep your dependencies contained, and not 
externally linked.

• Consider if all dependencies are needed, some might 
be avoided easily.

• If you have a lot of dependencies, you should 
probably rethink your solution entirely.



Why is Semantic Versioning important

• Without it we have no idea about when things are 
going to break.

• Reproducibility would be next to impossible.

• Software advancements would be tedious, slow and 
unstable.





POSIX Utility Conventions

Portable Operating System Interface (for unix-like 
systems).

General convention on how to use command line 
programs, how to add arguments to them and how these 
should be interpreted.

Currently POSIX utility conventions describe the 
minimal effort of how command line arguments should 
be interpreted, and hence used.



Options and non-options/operands

utility_name [options] [non-options/operands]

• Options SHALL be preceded by a hyphen ‘-’
• Option names are single alphanumeric characters (0-9, 
A-Z, a-z or check ‘man isalnum’).

• When an option takes an argument, it SHALL be parsed 
as: -ifoo or -i foo

• Multiple options MAY follow a hyphen.
• I.e., ‘-ifa’ is equivalent to ‘–i –f –a’ or ‘-i fa’.

• The first ‘--’ SHALL indicate end of options.



Options and non-options/operands 
(MAY or SHOULD)

• Non-options MAY precede options.
• I.e. ‘grep –v [pattern] [file]’ is equivalent to ‘grep 
[pattern] [file] -v’ (if accepted)

• Options SHOULD precede non-options on the command line.

• Options MAY be repeated, the options SHOULD be 
interpreted in the order they are given. But MAY be 
interpreted as the programmer sees fit (e.g. ssh -vvv).



GNU extensions

Gnu’s Not Unix
The GNU project aims to provide 
FREEDOM to the user, while these extensions 
are mostly contained in C99, and thus 
considered standard today.

• Upon the POSIX utility conventions, GNU adds long 
options.



Long options

• Allowing only single character names for options, 
may give rise to un-intuitive option names.

• With long options the one-character limit is 
removed, where long options are denoted with a 
double hyphen ‘--’. E.g. --distance.



Long option conventions

• SHALL only contain alphanumeric characters.

• Words SHOULD be separated by hyphens ‘-’.

• Long options SHOULD consist of one to three words, but there 
is no limit as long as these are unique.

• Long options SHOULD consist of lowercase characters only.

• Arguments SHALL be given as 
‘--long-option=arg’ or ‘--long-option arg’.



The most important MAY and SHOULD

• Why let non-options/operands precede options?.

• Why ‘--long-option’, and not 
‘--long_option’ or ‘--longOption’.

• Why SHOULD long options be lowercase and 
limited to one to three words.



Take home message

• ALWAYS obey semantic versioning.

• Remember to adhere to the POSIX utility conventions and 
GNU long options.

• If you are going to release a stable version.
• When you increment the major version.

• For the python users ‘argparse’ has been created and 
takes care of most of it.

• Does not warn about multicharacter short options.
• Requires fixed number of arguments.



“thefuck” are you 
talking about.

Most options and 
arguments are 
intuitive.





Keep it simple, 
Stick to the standards


	Semantic versioning,�POSIX utility conventions�and GNU extensions
	Semantic Versioning
	Comparability
	How to increment
	Stability
	Version out of control
	Dependency hell
	Version locks
	Solutions to version locks
	Dependency promiscuity
	Solutions to dependency promiscuity
	Why is Semantic Versioning important
	Slide Number 13
	POSIX Utility Conventions
	Options and non-options/operands
	Options and non-options/operands �(MAY or SHOULD)
	GNU extensions
	Long options
	Long option conventions
	The most important MAY and SHOULD
	Take home message
	Most options and arguments are intuitive.� ��
	Slide Number 23
	Keep it simple, �Stick to the standards

