Monday Meeting presentation 21/10/2024

PanRes 2

Nikiforos Pyrounakis Research assistant

PanRes db

- Pan Resistance
- Collection of genes that encode resistance to antibiotic drugs, heavy metals and biocides:
 - ResFinder
 - ResFinderFG
 - CARD
 - MegaRes
 - AMRFinderPlus
 - ARGANNOT
 - CsabaPal*

PanRes db

- 14078 unique genes
- Grouped based on 90% identity and 90% coverage
- Lengths range between 93 and 5972 bp

PanRes db 2

- Automatic db update
- Protein sequences for each gene
- PDB structures for each gene
- HMM profile for each high-homology cluster

Automated update

- Check databases for new genes
- Compare new db version with the old
- Update PanRes 2 with new genes

Automated update

- Databases were downloaded either using git or wget
- AMRFinderPlus special case
 - Extract sequences that had type:
 - * Type: AMR subtype:AMR
 - * Type: STRESS subtype:METAL
 - * Type: STRESS subtype:BIOCIDE
 - * Use esearch and efetch to get sequences from NCBI
- All the new sequences are compared with the old ones to check for new genes

Protein sequences - Prodigal

• Single:

- Used on well-assembled genomes of high quality.
- Uses a statistical model that its being trained based on the input data.
- Re-trains the model iteratively to fine-tune the predictions

• Meta:

- Used for metagenomic data.
- Relies on pre-built models.
- Sacrifices some of the specificity in favor of more flexible gene detection.

Protein sequences - Validation

- Prodigal Single:
 - → 14138 sequences
 - Multiple translations: 67
 - 3 Ratio: ~95%
 - Non 3 Ration: ~ 5%
- Prodigal Meta:
 - → 14212 sequences
 - Multiple translation: 116
 - 3 Ratio: ~ 93%
 - Non 3 Ratio: ~ 7%

Protein sequences - Validation

Single	Meta
14138	14212
13985	13966
13460	13280
13293*	13091*

1. Remove genes that had multiple translations

2. Remove genes that had gene_length/protein_length ratio <> 3 (73% MEGAres)

3. Remove genes that were located in reverse strand with incorrect start or stop codon?

PDB Structures

- Genes with 100% identity: 505
- Genes with 99%-80% identity: 5968
- Genes with 79%-50% identity: 2269
- Genes with 49%-20% identity: 4710

PDB Structures

- How long will it take to predict structures?
- How expensive will it be?
- Computerome? DTU HPC?
- Testing and benchmarking different tools
 - Collabfold
 - Foldseek
 - Alphafold

ColabFold

- User friendly and accessible
 - MMseqs2 integration
 - Faster than Alphafold

HMM Profiles

- "How similar proteins we should put together in each HMM for PanRes2?"
- Testing what NCBI AMRFinderPlus and ResFams did and how they build their profiles
- Different approaches?
 - Try to find a percentage of identity to cluster and then predict?
 - Predict a subset of structures, cluster and then create HMMs

Thank you!