Microbial outbreak surveillance system

Enabling automated microbial surveillance using Oxford Nanopore Technologies' long read sequencing

Outline for today

What the project is about

The science behind the project

What we have learnt so far

Current work and future ideas

Barriers to entry

Huge labs

Expensive equipment

Large, trained staff

Not automated report of results

The solution?

What needs to work scientifically

What need to work practically?

Localized sequencing

Localized GPU base calling

Localized computers

Easy-to-use software for non-technical users

No not just sequence everything and send it to the cloud?

The system

The back-end flow (Simplified)

Type amr, virulence, plasmids, mlst

Search for reference

If reference found:

kma alignment to reference MINTyper-based phylogenetic analysis

٦

Else:

assemble to new reference

Output PDF and report results

Database management

- Two databases:
 A reference database
 - A metadata database

Table 3.2: Isolate samples from the CPO outbreak, which were aligned, and their identified references and travel destinations. $\delta^* = \text{SNP}$ differences from the identified reference when using either MinION or Illumina reads.

E.coli isolate	δ^* MinION	δ^* Illumina	Reference identified	Patient travel destination
CPO20150014	71	59	NZ_CP024801.1	Thailand
CPO20150034	67	52	NZ_CP024801.1	India
CPO20150054	65	56	NZ_CP024801.1	Lebanon
CPO20160003	20	13	NZ_CP024801.1	Infected in Denmark
CPO20160077	20	14	NZ_CP024801.1	Infected in Denmark
CPO20180100	29	21	NZ_CP024801.1	Infected in Denmark
CPO20180105	29	21	NZ_CP024801.1	Infected in Denmark
CPO20180108	32	24	NZ_CP024801.1	Infected in Denmark
CPO20180119	34	26	NZ_CP024801.1	Infected in Denmark
CPO20180039	55	55	NZ_CP026473.1	Thailand
CPO20150011	146	95	NZ_CP029108.1	Pakistan
CPO20170014	98	93	NZ_CP029108.1	Pakistan

Challenge with deployment

Deployment must be extremely user friendly

Must technically be able to run on a laptop

GPU must be able to base call

= > Consumer targeted software engineering is hard, but we have learnt a lot!

It is impossible to predict pit falls if you can't imagine them!

Test driven development

A lot of technical debt to be cleared up

We are writing automated tests for every step of the pipeline

If system crashes, we will instantly know why/what happened.

Focus on speedy recovery rather than avoiding failures

Lesson learned: Once a laptop is shipped off to Africa, it becomes extremely difficult to identify and fix issues.

Future work

1

Enable data sharing of results

2

Include virus workflow

3

Include metagenomics workflow

4