Validation of machine learning models

Derya Aytan-Aktug

Machine learning is cool!

- Automated pattern detection method
- Unsupervised/supervised

Very briefly supervised machine learning

supervised learning

Feature importance

supervised learning

Discoveries with machine learning

- Novel antimicrobial resistance genes
- Novel plasmid hosts

Discoveries with machine learning

- Novel antimicrobial resistance genes
- Novel plasmid hosts

renes Are the?

Discoveries with machine learning

- Novel antimicrobial resistance genes
- Novel plasmid hosts

enes Are the?

- Linkage disequilibrium
- Epistatic interactions
- Wrong
- •

Project-1: Machine learning based ResFinder

• Goals:

- Unknown effects of known resistance genes?
- In-vitro validation of the models with TWIW isolates

Method

	Gene-1	Gene-2	Gene-3
Isolate-1	coverage	coverage	coverage
Isolate-2	coverage	coverage	coverage
•••			

	Gene-1	Gene-2	Gene-3
Isolate- 1000	coverage	coverage	coverage
Isolate- 10001	coverage	coverage	coverage

Pheno-1	Pheno-2	Pheno-3
1/0	1/0	1/0
1/0	1/0	1/0
•••		

	Pheno-1	Pheno-2	Pheno-3
•	0	1	0
	1	1	0

Organism	Antibiotic	ResFinder - MCC	PointFinder - MCC	ResFinder + PointFinder - MCC	5-mers - MCC	8-mers-MCC
Neisseria	Ciprofloxacin	0,207	0,749	0,751	0,759	0,792
Salmonella	Ampicillin	0,955	0,36	0,954	0,761	0,877
Salmonella	Streptomycin	0,892	0,446	0,864	0,746	0,836
Salmonella	Tetracycline	0,955	0,504	0,951	0,843	0,904
Campylobacter	Ciprofloxacin	0,251	0,825	0,787	0,576	0,633
Campylobacter	Tetracycline	0,954	0,273	0,951	0,859	0,949
Escherichia	Amikacin	0,526	0,472	0,618	0,51	0,526
Escherichia	Ampicillin	0,857	0,388	0,75	0,418	0,574
Escherichia	Cefoxitin	0,757	0,192	0,676	0,411	0,725
Escherichia	Chloramphenicol	0,537	0,062	0,377	0,148	0,311
Escherichia	Colistin	0,458	0,452	0,518	0,383	0,625
Escherichia	Gentamicin	0,669	0,303	0,582	0,425	0,466
Escherichia	Imipenem	0,62	0,369	0,568	0,56	0,59
Escherichia	Tetracycline	0,7	0,324	0,542	0,271	0,508
Escherichia	Tigecycline	0,479	0,531	0,584	0,326	0,598
Escherichia	Tobramycin	0,745	0,069	0,66	0,351	0,504
Klebsiella	Amikacin	0,877			0,762	0,809
Klebsiella	Cefoxitin	0,52			0,525	0,591
Klebsiella	Colistin	0,182			0,189	0,208
Klebsiella	Gentamicin	0,781			0,445	0,594
Klebsiella	Imipenem	0,813			0,74	0,845
Klebsiella	Minocycline	0,328			0,387	0,359
Klebsiella	Tetracycline	0,698			0,414	0,54
Klebsiella	Tigecycline	0,065			0,122	0,202
Klebsiella	Tobramycin	0,853			0,54	0,688
Mycobacterium	Amikacin	0	0,745	0,652	0,17	0,561

Feature importance results

- aadA1_4_JQ480156 imipenem
- aadA1b_1_M95287 amikacin
- ant(3")-Ia_1_X02340 amikacin, cefoxitin, gentamicin, minocycline, tigecycline, tobramycin
- aph(6)-Id_1_M28829 amikacin, tetracycline
- blaACT-5_1_FJ237369 amikacin
- blaMIR-1_1_M37839 amikacin, chloramphenicol, colistin, tigecycline
- blaOXA-9_1_KQ089875 imipenem
- blaTEM-1A_1_HM749966 imipenem
- catB3_2_U13880 tobramycin
- formA_1_X73835 amikacin, ampicillin, cefoxitin, colistin, gentamicin, imipenem, tigecycline
- mdf(A)_1_Y08743 cefoxitin, gentamicin, imipenem, minocycline, amikacin

• ...

Feature importance results

- aadA1_4_JQ480156 imipenem
- aadA1b_1_M95287 amikacin
- ant(3")-Ia_1_X02340 amikacin, cefoxitin, gentamicin, minocycline, tigecycline, tobramycin
- aph(6)-Id_1_M28829 amikacin, tetracycline
- blaACT-5_1_FJ237369 amikacin
- blaMIR-1_1_M37839 amikacin, chloramphenicol, colistin, tigecycline
- blaOXA-9_1_KQ089875 imipenem
- blaTEM-1A_1_HM749966 imipenem
- catB3_2_U13880 tobramycin
- formA_1_X73835 amikacin, ampicillin, cefoxitin, colistin, gentamicin, imipenem, tigecycline
- mdf(A)_1_Y08743 cefoxitin, gentamicin, imipenem, minocycline, amikacin

• ...

How the validation could be done?

Target:

catB3-2 \rightarrow tobramycin

Validation isolates:

Should not include any known tobramycin resistance genes or mutations

Should include catB3-2 gene

Should be tested for tobramycin

But there might no case...

- A subset from TWIW isolates tested in-house:
 - CatB3-2 including *E.coli* and *K.pneumoniae*
 - All of them resistance against tobramycin
 - In the same contig, blaOXA-1 and/or aac(6')-Ib-cr present
- CatB3-2, not responsible for tobramycin resistance
 - In linkage disequilibrium with aac(6')-Ib-cr

Take home messages

- Important features of prediction model should be interpreted in caution.
- In-vitro experiments are required.

Weakness of machine learning

• Showing the associations between the features

How project-1 will continue?

- Another model will be developed from pangenomes.
 - To identify novel resistance genes
 - Models and novel genes will be validated using the in-house data.

Previous pangenome studies:

- Pangenome annotation using prodigal
- Clustering annotated genes using CD-HIT using aa identity

My approach:

- Aligning against global gene catalog (homology reduced) using KMA
 - Annotate the important features later

GMGC Downloads API Help About & contact

Global Microbial Gene Catalog v1.0

The Global Microbial Gene Catalog is an integrated, consistently-processed, gene catalog of the microbial world, combining metagenomics and high-quality sequenced isolates. A total of 2.3 billion ORFs from 13,174 metagenomes (covering 14 habitats) and the complete ProGenomes2 database were clustered together at 95% nucleotide identity to build a catalog of 302,655,267 unigenes. Read more...

Project-2: Validation of PlasmidHostFinder

- Prediction of plasmid hosts
 - K-mer based model
 - At different taxonomy levels
- False positives

Center for Genomic Epidemiology			
Home	Services	Instructions	Output
PlasmidHostFinder 1.	0		
asmid host range prediction ew the <u>version history</u> of this server.			
ease note that the program only works wit	n assemblies (.fasta/.fna)!		
ompressed files are also not acceptable.			
elect type of your reads			
elect the class probability threshold for the 0.5*	prediction		
elect mode of the program Fast*	0		
t≩ Choose File(s) Name		Size Progress	Status
		-	

Project-3:Tracking metagenomic samples under antimicrobial stress

- Track organisms
- Track resistance
 - HGT
 - Spontaneous mutations

+gentamicin or tetracycline

Side project: Machine learning-based taxonomy identifier

- Predicting taxonomies from complete and fragmented assemblies
 - Tried for Klebsiella spp., Escherichia spp., Salmonella spp., Campylobacter spp.
- Fragment model is less sensitive at the species level.