
Monday Meeting presentation 15/04/2024

Million Miles High

Nikiforos Pyrounakis Research assistant

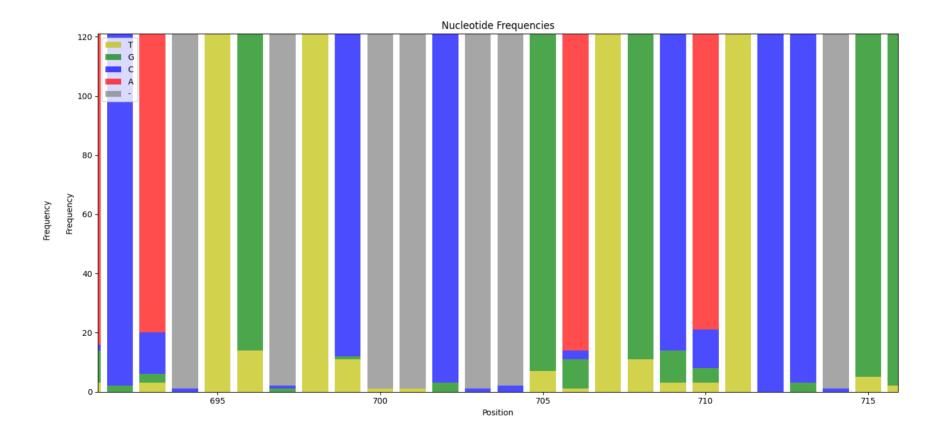
Gene Consensus Challenges

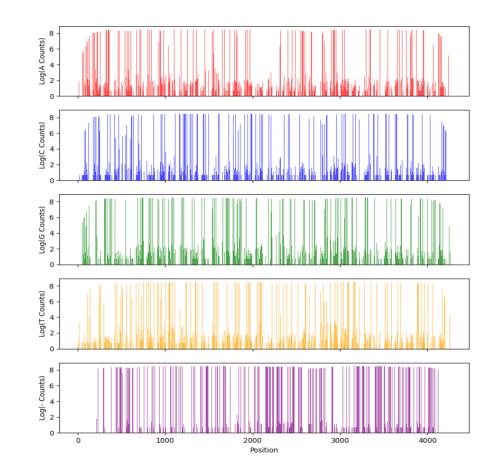
- Normally a consensus version of a gene is called in a simple sample.
- Most organisms being only 1-100x covered, it is difficult to distinguish sequencing errors and real rare variants.

Million Miles High Alignment

- Recruit hundreds of thousand of samples
- Very deep alignments
- Subtract the background noise of sequencing errors

- Analyze how each position within the gene mutates across different bacterial populations.
 - Study mutation rate globally across all samples
 - > Within specific subsets of the bacterial population

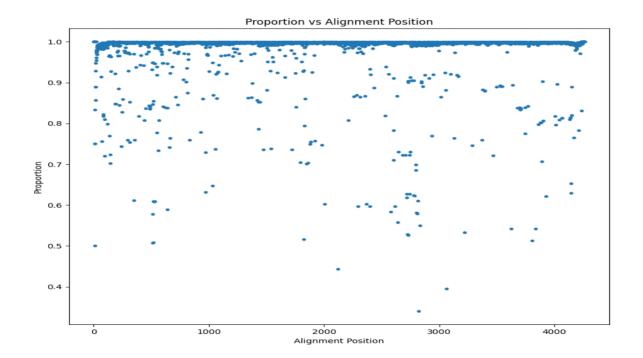

First steps


• Sort

• With the aim on investigating nucleotide frequencies per position:

Position	A	С	G	T	-	A%	C%	G%	Т%	-%
1	0	0	0	1	0	0.00%	0.00%	0.00%	0.00%	0.00%
2	0	0	0	1	0	0.00%	0.00%	0.00%	0.00%	0.00%
3	0	0	0	1	0	0.00%	0.00%	0.00%	0.00%	0.00%
4	0	0	0	1	0	0.00%	0.00%	0.00%	0.00%	0.00%
240	3568	6	0	1	0	8.12%	0.01%	0.00%	0.00%	0.00%
241	0	2	3578	1	0	0.00%	0.00%	8.15%	0.00%	0.00%
242	900	1	2675	18	2	2.05%	0.00%	6.09%	0.04%	0.00%
243	0	2	3609	2	0	0.00%	0.00%	8.22%	0.00%	0.00%
269	0	0	1	0	3869	0.00%	0.00%	0.00%	0.00%	8.81%
270	39	2	4	3810	44	0.09%	0.00%	0.01%	8.68%	0.10%
271	1	3811	0	103	0	0.00%	8.68%	0.00%	0.23%	0.00%
272	0	5	0	0	3910	0.00%	0.01%	0.00%	0.00%	8.90%

6



7

• For each position we wanted to know:

- Which nucl was #1, #2, #3, #4, #5
- > What is the ratio between #1 and the sum of the other

1	0	0	0	1	0 0.00	% 0.00%	0.00%	0.00%	0.00%	1	1	1
2	0	0	0	1	0 0.00	% 0.00%	0.00%	0.00%	0.00%	1	1	1
3	0	0	0	1	0 0.00	% 0.00%	0.00%	0.00%	0.00%	1	1	1
4	0	0	0	1	0 0.00	% 0.00%	0.00%	0.00%	0.00%	1	1	1
240	3568	6	0	1	08.120	% 0.01%	0.00%	0.00%	0.00%	3568	3575	0.998041958041958
241	0	2	3578	1	0 0.00	% 0.00%	8.15%	0.00%	0.00%	3578	3581	0.99916224518291
242	900	1	2675	18	2 2.059	% 0.00%	6.09%	0.04%	0.00%	2675	3596	0.743882091212458
243	0	2	3609	2	0 0.00	% 0.00%	8.22%	0.00%	0.00%	3609	3613	0.998892886797675
269	0	0	1	0	3869 0.00	% 0.00%	0.00%	0.00%	8.81%	3869	3870	0.999741602067183
270	39	2	4	3810	44 0.09	% 0.00%	0.01%	8.68%	0.10%	3810	3899	0.977173634265196
271	1	3811	0	103	0 0.00	% 8.68%	0.00%	0.23%	0.00%	3811	3915	0.973435504469987
272	0	5	0	0	3910 0.000	% 0.01%	0.00%	0.00%	8.90%	3910	3915	0.998722860791826

9

Already existing tools

- We decided to try already existing tools that focus on variant calling:
 - Bcftools
 - Vcftools
 - > freebayes
 - > GATK
 - InStrain
 - > metaSNV

Struggles with KMA

- KMA removes some valuable variant calling information:
 - Bcftools Runs with KMA
 - Vcftools Runs with KMA
 - freebayes Runs with KMA
 - GATK Complains for NM tag
 - InStrain Complains for NM tag
 - MetaSNV Complains for NM tag

NM tag: Edit distance, which is the number of mismatches and gap openings in the alignment

freebayes

- Developed in 2012
- Bayesian genetic variant detector designed to find small polymorphisms, specifically SNPs , indels, MNPs, and complex events (composite insertion and substitution events) smaller than the length of a short-read sequencing alignment.
- Important flags:
 - min-alternate-fraction: Sets the minimum fraction of observations that must support the alternate allele. Here, a fraction of 0 means that even a single observation of the alternate allele is sufficient.
 - **pooled-continuous**: Estimate the frequency across the entire pool of samples
 - **report-monomorphic**: Report positions where all samples in the input data have the same allele
 - haplotype-length: Consider every possible combination of variants

freebayes

• Run 1

- Min-alternate-fraction: 0.1
 - 143 variants
 - 14 min

• Run 2

- Min-alternate-fraction: 0.01
 - 238 variants
 - 14 min

• Run 3

- Min-alternate-fraction: 0.001
 - 1362 variants
 - 12 min

- Run 4
 - Min-alternate-fraction: 0.0001
 - 1256 variants
 - 10 min

• Run 5

- Min-alternate-fraction: 0.5
 - ✓ 64 variants
 - 14 min

Moving forward

- Continue testing freebayes
 - Filter variant results
- Try aligning again the samples with BWA
 - > Designed for short-reads
 - Keep useful tags

Thank you!