Decontamination of bacterial isolates

What types of contamination exists?

• Cross contamination

- Other bacteria
- Human, virus etc.
- Intra species contamination

Case scenarios

- Primary organism is when >75% of our DNA can be linked to a reference
- Secondary organism is when > 1% of our DNA can be linked to a reference
- Noise is the rest where we can't determine the origin

Good

Primary isolate + noise

Fixable

Primary isolate + secondary + noise

Likely back to the lab :(

multiple secondary isolates + noise

What would we like our decontamination tool to do?

- Input: Raw DNA reads
- Some magic
 - Figure out the scope of the problem
 - Multiple organisms? One + noise? Several of the same organism?
 - Remove unwanted reads
- Output: Decontamination report, clean reads, contaminated reads

What existing tools are there?

- Kraken2
 - Catches a lot but also missed a lot. Good at identifying potential organisms in sample, but not for correctly determining read origin
- checkm
 - Not trained for isolate sample and constantly overestimates contamination rate. Build for assembled data too.
- ConFindr
 - rMLST tool build only for illumina data.
- EukCC
 - Marker gene based tool for Eukaryotes
- CONSULT
 - k-mer based read matching against references.

Why not just assemble the reads???

Why not assemble and then figure contamination out?

Chimeric Assembly

Combining it all:

- KMA alignment against selected databases:
 - Human, virus etc for obvious contaminations
 - Bacteria whole genome database
- rMLST, GTDB mapping
 - This provides a list of possible bacteria that could be in the sample
 - Has enough sensitivity to detect intra-species contamination
- Based offalignment hits and marker genes we can now more confidently determine the origin of our reads
 - Remove reads from highly confident sources of contamination, but keep reads that could potentially originate from the primary isolate

rmlst/MLST

#Template	score	Expected	Template_1	ength Template_I	dentity	Template_Coverage	Query_Identity	Query_Coverage	Depth q	_value p_value
adk_14	18378	21	477	100.00	100.00	100.00	100.00	38.30	18314.87	1.0e-26
adk_55	159662	20	477	100.00	100.00	100.00	100.00	332.52	159601.21	1.0e-26
atpG_7	4326	19	447	95.08	95.08	100.00	105.18	9.59	4266.89	1.0e-26
atpG_11	157467	19	447	100.00	100.00	100.00	100.00	350.53	157410.00	1.0e-26
atpG_14	3855	19	447	99.55	100.00	99.55	100.00	8.70	3795.92	1.0e-26
atpG_142	30	86	19	447	95.30	95.53	99.77 104.	68 6.	65	3027.01 1.0e
frdB_16	173367	20	489	100.00	100.00	100.00	100.00	351.00	173304.93	1.0e-26
frdB_59	9070	21	489	99.80	100.00	99.80	100.00	18.41	9005.23	1.0e-26
fucK_14	110568	14	345	100.00	100.00	100.00	100.00	316.06	110523.43	1.0e-26
fucK_15	2777	15	345	100.00	100.00	100.00	100.00	7.85	2731.41	1.0e-26
fucK_59	2404	15	345	97.68	98.26	99.41	101.77	6.94	2358.46	1.0e-26
mdh_81	4420	17	405	99.75	100.00	99.75	100.00	10.63	4366.41	1.0e-26
mdh_89	134579	17	405	100.00	100.00	100.00	100.00	328.15	134527.02	1.0e-26
pgi_113	171552	19	468	100.00	100.00	100.00	100.00	363.54	171492.56	1.0e-26
recA_1	3452	18	426	100.00	100.00	100.00	100.00	8.11	3395.72	1.0e-26
recA_3	153512	18	426	100.00	100.00	100.00	100.00	356.01	153457.62	1.0e-26

Perhaps we don't need perfect rmlst/mlst to conclude that there is likely a intraspecies contamination

Total work flow

- 1. Trim input reads and filter for q-score
- 2. Map trimmed reads against EuDB, ViralDB and bacteriaDB (Maybe also others)
- 3. Determine marker genes for bacterial organism
 - a. If based on mapping & marker genes that intra species contamination is taking place; sort them and access depth.
- 4. Remove minimal amount of only highly confident contamination DNA
 - a. If it maps to something else and not our primary source, remove it.
- 5. Finally, divide trimmed reads into new output files; One for the cleaned reads, one for contaminated ones.

Concluding remarks

- DNA contamination is super important and currently no effort anywhere is done to decontaminate long read sequencing data
- We must decontaminate directly on raw reads to avoid chimeric assemblies
- rMLST enables us to screen for intra species contamination
- Remove only DNA we are 100% sure is not from our primary source, as too much removal can also result in fragmented genomes
- Now it is time to validate the tool on some data and validate that it works :)
- Finally, maybe write a docker image/conda package so everyone can use it